Waste and Water Management

Waste Management⁵⁶

Our waste management strategy includes monitoring waste at its source, enhancing resource utilisation, and reducing waste generation.

We also divert waste from landfills through methods like recycling and co-processing. Our waste management practices align with our commitment to co-processing 30% of hazardous waste by 2025.

We continue to identify opportunities to minimise any adverse environmental effects from our operations. We have adopted digital solutions to reduce paper consumption in our operations.

We have also implemented the Equipment Qualification and Validation Life Cycle Management System (EQVLMS), a software that replaces manual paper-based document archiving with an online repository.

Type of Waste Generated (MT)57

Categories	FY21	FY22	FY23	FY24
Hazardous	30,580.18	29,802.89	32,033.69	32,353.58
E-waste	6.22	9.35	9.51	19.53
Non-hazardous	15,508.17	21,494.28	21,407.26	19,817.99

Waste Diverted from Disposal (MT)⁵⁸

Waste Diverted from Disposal (MT) ³⁰					
Categories	FY21	FY22	FY23	FY24	
Hazardous waste					
Reuse	159.06	0	0	0	
Recycling	11,801.24	15,445.71	15,448.30	16,021.95	
Other recovery options	1,613.53	0	0	13.18	
Total	13,573.83	15,445.71	15,448.30	16,035.13	
E-waste					
Recycling	7.20	10.71	5.32	19.92	
Non-hazardous waste					
Reuse	1.90	1.92	3.08	463.59	
Recycling	14,956.40	20,113.92	20,059.71	14,383.29	
Other recovery options	834.14	811.19	629.26	3,526.86	
Total	15,792.44	20,927.03	20,692.05	18,843.46	

Waste Directed to Disposal (MT)⁵⁹

Categories	FY21	FY22	FY23	FY24
Hazardous waste				
Incineration with Energy recovery	251.91	59.79	998.23	150.22
Incineration without Energy recovery	2,631.76	2,111.36	719.81	617.45
Landfilling	8,976.61	8,481.45	10,535.78	11,589.68
Co-processing	3,045.84	2,566.87	2,759.85	3,192.38
Other disposal operations	0	0	0	351.92
Total	14,906.11	13,219.47	15,013.67	15,901.65
Non-hazardous waste				
Incineration with Energy recovery	0	0	0	67.57
Incineration without Energy recovery	42.66	49.34	41.30	8.82
Landfilling	1,146.71	1,024.57	552.38	828.89
Co-processing	0	0	0	0
Other disposal operations	0	0	0	1.81
Total	1,189.37	1,073.91	593.68	907.09

To reduce the disposal of single-use plastic, we have partnered with authorised third-party waste handlers for the collection and management of end-use plastic, thereby ensuring compliance with the pollution control board's guidelines and regulations of Extended Producer Responsibility (EPR).

Waste and Water Management

Water Stewardship⁶⁰

At Sun Pharma, we have set a target to be water-positive by 2030. In the reporting year, we took significant steps to reduce water consumption across our operations. Recognising that cooling towers are major water consumers; we focused on decreasing thermal load at our manufacturing sites by utilising lowgrade heat. We installed heat pumps to capture and repurpose waste heat and enhanced chiller efficiency to minimise water use in cooling towers.

Additionally, we have also upgraded our water treatment systems to minimise water loss.

In the reporting year, we had zero liquid discharge (ZLD) systems operational at 16 sites. At non-ZLD locations, we ensure our effluent treatment systems comply with local regulations while monitoring discharges to protect local ecosystems. We also collect and reuse water from

Air Handling Unit (AHU) drains and recycle RO reject water, optimising overall water use. Transitioning from groundwater to surface water at various locations, we implemented flow-reducing nozzles, aerators, and sensor-based tap leakages to prevent losses and maintain operational efficiency. Our rainwater harvesting initiatives further reduce reliance on external sources and aid in replenishing local groundwater levels.

Watershed Development Project

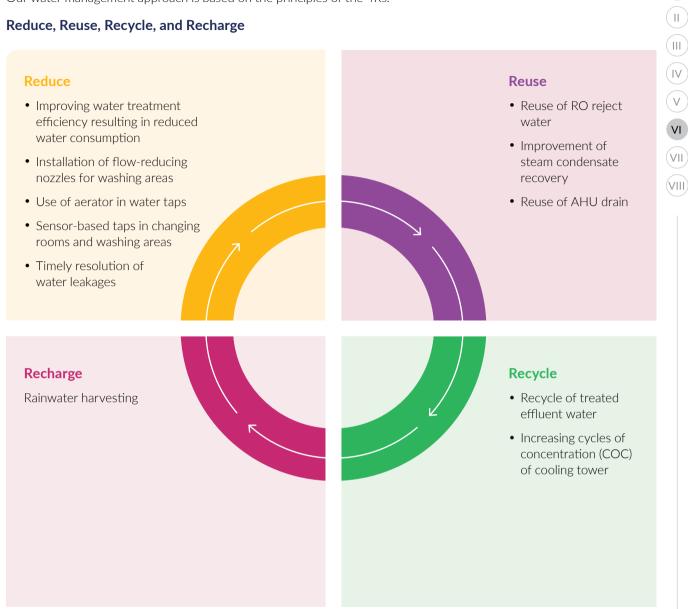
We have initiated a major CSR project for watershed development in various villages across Ahmednagar and Beed districts in Maharashtra, India. These initiatives aim to enhance the resilience of rural communities facing critical water scarcity challenges, particularly in drought-prone areas. Our strategy supports farmers in reducing dependency on rainfall for irrigation by implementing effective water harvesting and management practices. Covering over 29,000 hectares and benefiting more than 7,800 household (including both farming and non-farming households) and a population of more than 36,000, our projects have led to the construction of vital water harvesting structures, such as farm ponds and check dams, which replenish groundwater aquifers and support agricultural and domestic water needs. In FY24, these efforts have directly benefited over 1,600 farming households, improved soil moisture, and reduced soil erosion. We successfully created water harvesting potential of 1.57 Million kiloliters of water, increased soil moisture, reduced soil erosion in 906 hectares of land and enhanced crop potential through group irrigation wells installation.

1,600+

Farming households benefitted

1.57 Mn KL

Water harvested

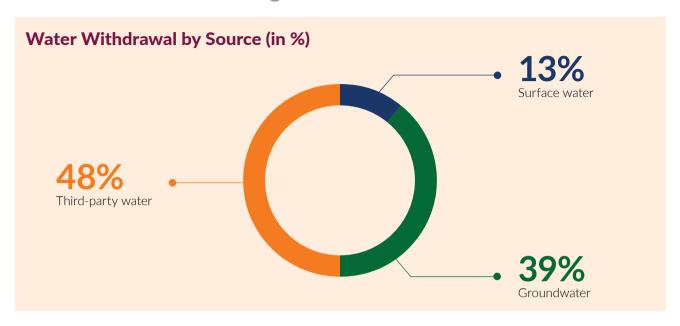

Through community engagement, we conducted awareness and capacity-building sessions focused on water conservation, and efficient agricultural practices. We remain dedicated to water stewardship, creating shared value for local communities, and contributing to their socio-economic development.

Note - All numbers/information are for FY24

Our water management approach is based on the principles of the 4Rs:

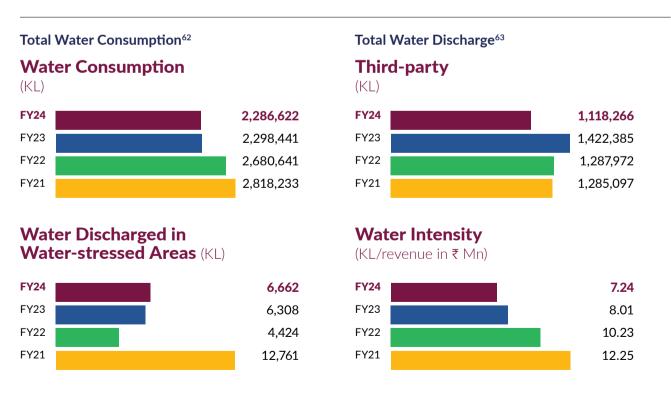
Reduce, Reuse, Recycle, and Recharge

We are committed to decreasing our dependence on groundwater sources, especially in water-stressed areas. Our water withdrawal in water-stressed areas was 11% in FY24 compared to 12% in FY23. In FY24, groundwater usage was 39% of the total water withdrawal compared to 42% in FY23.


Water Withdrawal by Sources⁶¹

Source	FY21	FY22	FY23	FY24
Third-party (KL)	1,598,604	1,556,383	1,454,548	1,631,368
Surface water (KL)	708,714	649,986	696,295	447,578
Groundwater (KL)	1,796,012	1,762,243	1,569,983	1,325,943
Total	4,103,330	3,968,613	3,720,826	3,404,889

Note - All numbers/information are for FY24



Waste and Water Management

Water Withdrawal from Water-stressed Areas

Source	FY21	FY22	FY23	FY24
Third-party (KL)	52,054	51,717	53,998	53,930
Surface water (KL)	6,000	7,200	7,200	7,200
Groundwater (KL)	413,553	448,239	400,341	315,954
Total (KL)	471,607	507,156	461,539	377,084

Biodiversity and ecosystem services are interlinked with our operations, influencing factors like freshwater availability, air quality, noise management, and flood mitigation. Diversity amongst flora and fauna is crucial in sustaining ecological balance and serves as an important measure for maintaining a healthy ecosystem.

At Sun Pharma, we recognise the linkage between biodiversity and our operational sustainability and are committed to minimising any negative impacts on biodiversity and ecosystem services. Our commitment to biodiversity management is outlined in our Biodiversity Policy, which is publicly available on our website.

Assessing Biodiversity Risks and Ecosystem Health

We have assessed five manufacturing locations for biodiversity risks based on their contribution to their overall business. The biodiversity risk assessment has documented various biodiversity components, ecosystems, and ecosystem services within and around these five locations. We identified biodiversity risks using the Taskforce on Nature related Financial Disclosures Framework (TNFD) V0.4. Floral and faunal biodiversity surveys conducted have established a baseline for biodiversity management.

Stages of Biodiversity Risk Assessment

Documentation of Biodiversity

Documentation of floral (trees, shrubs, herbs, and medicinal plants), faunal diversity (mammals, birds – aquatic and terrestrial, herpetofauna, butterflies)

Analysis of Diversity

Conducting qualitative and quantitative analyses of floral and faunal diversity

Species Identification

Identification of flora and fauna along with rare and endangered species; nationally, regionally, or locally significant species and communities present in the study area as per Wildlife (Protection) Act, 1972

Carbon Sequestration Assessment

Evaluating the carbon sequestration potential of the existing green belt within the study area

Action Plan Development

Formulating a strategic action plan for the conservation and enrichment of biodiversity

Assessment of Invasive Species

Identifying non-native or invasive species that may threaten the local ecosystem

Biodiversity Risks and Opportunities

Risks

- Risk due to sourcing of surface water/ groundwater for process requirements
- Risk arising due to the growth of invasive species in greenbelt areas
- Risk from species with high conservation importance reported within the site and nearby areas

Opportunities

Carbon sequestration in greenbelt areas can reduce residual emissions, and enhance biodiversity conservation